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Motivation



Why generate antibodies?

• Vital for rapid discovery and delivery of antibody-based drugs.

• Important considerations include efficacy, safety, and

manufacturability.

• Challenges include enormous state space of protein sequence

and high-entropy variable regions.

• Experimental validation is time-consuming and expensive.
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Why structure based generation?

• Simpler in continuous settings, enabling direct optimization in

structural space

• Necessitates inverse-folding of structures.

• Optimized structure does not guarantee a realizable sequence.

• Even if the sequence exists, inverse-folding could be difficult
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Sequence based generation

• Two general directions: diffusion and autoregressive models

• Diffision models

• Generate from noise

• Challenge: intricate noise scheduling

• Autoregressive models

• Next-token prediction

• Challenge: error accumulation
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Preliminaries



Score based models

• Learns the “direction” that removes noise

• Add noise to the original data and learn the perturbation

• Works well for continuous data

∇logp(y)
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Neural Empirical Bayes (NEB)

• Formalism to recover X for a smoothed random variable

Y = X +N (0, σ2Id)

• ∇logp(y) is the score model!

x̂ = y + σ2∇logp(y)
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discrete Walk-Jump Sampling (dWJS)

• Smooth the discrete data to continuous data using noise

• Perform the MCMC walk on continuous noisy data manifold

using the denoising score model

• Jump back to the discrete data using NEB
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Gradient-guided discrete Walk-Jump

Sampling (gg-dWJS)



We need targeted generation

• Generated sequences need to be antibody-like

• ... but also optimized for a specific attribute!
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Gradient guidance

• We can learn attributes of a noised sequence using

discriminator model fθ(Y )

• Attributes can be antigen affinity, aromaticity, instability, etc.

• Use ∇fθ(Y ) to maximize the attribute
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Gradient guidance

• We can learn attributes of a noised sequence using

discriminator model fθ(Y )

• Attributes can be antigen affinity, aromaticity, instability, etc.

• Use ∇fθ(Y ) to maximize the attribute Gradient guidance!
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Steps

1. Learn a noisy discriminator model

2. Learn a noisy score model

3. Gradient guided walk

4. Gradient guided jump
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Step 1: Learn a noisy discriminator model

• Add noise to the discrete sequences while keeping their

ground truth

• Learn a predictor!

fθ(Y )
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Step 2: Learn a noisy score model

• Add noise to the discrete sequences

• Train the score based model

gφ(y)
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Step 3: Gradient guided walk

• Use MCMC to denoise

• We walk in the smoothed manifold, so score-based model will

work!

• Combine discriminator gradient for guided walk towards

optimized attribute region
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Step 4: Gradient guided jump

• Use NEB to jump to discrete region

• Conditional NEB: use discriminator gradient for guided jump
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Step 4: Gradient guided jump

• Use NEB to jump to discrete region

• Conditional NEB: use discriminator gradient for guided jump
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In summary...

Figure 1: Gradient-guided discrete walk-jump sampling process. We

begin the sampling process by smoothing some discrete seed. Next, we

conduct the gradient-guided walk process by combining denoising

gradient with the discriminator gradient. Finally, we perform

gradient-guided jump to return to the discrete data manifold. Here,

purple tint represents higher data density and larger circle represents

higher data distribution.
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Multi-objective optimization (MOO)

• Finding x∗ ∈ X such that d different rewards are maximized

simultaneously

R(x∗) = maxx∈X R(x) =

[maxx∈X R1(x),maxx∈X R2(x), . . . ,maxx∈X Rd(x)]
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Multi-objective optimization (MOO)

• We can do weighted sum of different objectives to turn them

into a single objective

• We can learn the smoothed predictor Fθ(x ,w)

• ... and use its gradient to guide the Langevin walk in the

noisy manifold

Fθ(x ,w) =
∑

wiFθ,i(x)
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Multi-objective optimization with gg-dWJS

• Perform the single-objective decomposition of the MOO

problem using preference conditioning

• For multiple preference weights w , sample and create Pareto

front

g = gφ(y) +∇y f1,θ(y ,w1) +∇y f2,θ(y ,w2) + · · ·+∇y fd ,θ(y ,wd)

= gφ(y) +∇yw1R1(y) +∇yw2R2(y) + · · ·+∇ywdRd(y)

= gφ(y) +∇y (w1R1(y) + w2R2(y) + · · ·+ wdRd(y))

= gφ(y) +∇y fθ(y ,w)
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Results



Discretized MNIST generation

• Can we generate binarized (discrete) image conditionally?

• Yes!

Figure 2: Comparison of binarized MNIST samples generated by

different dWJS methods. Left: from top to bottom: dwjs, gg-dWJS w/o

denoising gradient, gg-dWJS. Right: from top to bottom: gg-dWJS

generated samples with label 0, 3, and 8.
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Antibody sequence optimization

Table 1: Experiment results for antibody sequence generation for

single-task optimization task. The results show that gg-dWJS-generated

sequences are better optimized and of higher quality.

Method dcs ↑ Instability index ↓ % Beta sheets ↑

dWJS 0.49 ± 0.30 34.14 ± 6.38 0.393 ± 0.02

gg-dWJS w/ Beta sheet discriminator 0.51 ± 0.28 35.92 ± 6.25 0.408± 0.02

gg-dWJS w/ Instability discriminator 0.56 ± 0.27 31.32 ± 5.21 0.402 ± 0.023

VDM 0.34 ± 0.31 39.50 ± 6.79 0.37 ± 0.02

IgLM 0.19 ± 0.29 38.84 ± 6.18 0.37 ± 0.02

GPT-4o 0.31 ± 0.30 42.63 ± 2.47 0.37 ± 0.01

GFlowNets 0.0 ± 0.0 39.04 ± 1.04 N/A
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Antimicrobial peptide (AMP) generation

Table 2: Results on the AMP Task.

Performance Diversity Novelty

gg-dWJS 0.98± 0.015 25.78± 1.22 15.021± 1.02

GFlowNet-AL 0.932± 0.002 22.34± 1.24 28.44± 1.32

DynaPPO 0.938± 0.009 12.12± 1.71 9.31± 0.69

COMs 0.761± 0.009 19.38± 0.14 26.47± 1.3

GFlowNet 0.868± 0.015 11.32± 0.67 15.72± 0.44
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Antimicrobial peptide (AMP) generation

Figure 3: Distribution of amino acids found in the generated AMPs by

gg-dWJS matches that of known AMPs while maintaining focusing on

amino acid ”K”, which is dominant in peptides with anti-microbial

activity.
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Antibody multiobjective optimization

Figure 4: Pareto front of the samples generated using three preference

weights with gg-dWJS.
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Project URL

https://zarifikram.github.io/gg-dWJS/
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