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Introduction



Why World Models?

+ Model Predictive Control (MPC)
* Model Based Reinforcement Learning (MBRL)

* Model Based Reasoning



Model-based reasoning for robotic control

Learned Physics Model Game Play Module

Inference and Estimation

st

Controller

Sensor Measurements

Fazeli et al. (2019). See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics, 4(26).



Model-based reasoning for human-Al interaction
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(a) Car merges ahead of human; (b) Car backs up at 4way stop;
anticipates human braking anticipates human proceeding

Sadigh et al. (2016). Planning for autonomous cars that leverage effects on human actions. RSS 2016.



Model-based reasoning for science
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Segler, Preuss, & Waller (2018). Planning chemical syntheses with deep neural networks and symbolic Al. Nature, 555(7698).
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Model-based reasoning for games

Selection b  Expansion c Evaluation d Backup

Silver et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484.
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Model, View, Controller

At each time step, our agent
receives an observation from
the environment.

World Model

The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict
future states.

A small Controller (C) uses the
representations from both
V and M to select good actions.

The agent performs actions that

go back and affect the environment.
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What 1s a model?

* Definition: a model is a representation that explicitly encodes knowledge
about the structure of the environment and task.

A transition/dynamics model: S = S+. QA
y b+l fs( & t) Typically what is meant by

the model in model-based RL

A model of rewards: T¢41 = fr(St, at)

e An inverse transition/dynamics model: g; = f;1(3t73t+1)
e A model of distance: d;; = fa(si, S;)

e A model of future returns: Gy = Q(St, at) or Gy = V(St)



Where does the model fit into the picture?
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Where does the model fit into the picture?
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Why do we want to learn a model?

Interactions with humans
(no access)

Simulating complex
physical dynamics
(too expensive)

Planning with real robots
(too expensive, too risky)



V-View

’/_\ States vs. Observations vs. Latent Statef\
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St+1 Parametric vs. Non-Parametric
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Why View?

+ Observation o, can high dimensional

+ Compresses each o, it receives at time step t into a low dimensional latent
vector Z,

« This compressed representation can be used to reconstruct the original o,



C-Controler

* The Controller (C) model is responsible for determining the course of actions
to take in order to maximize the expected cumulative reward of the agent
during a rollout of the environment.

* It uses V and M to rollout the environment

+ Like a dream!

* Can be (almost) any RL algorithm



Prelimimaries



Autoencoders

@ An autoencoder is a feed-forward neural net whose job it is to take an
input x and predict x.

@ To make this non-trivial, we need to add a bottleneck layer whose
dimension is much smaller than the input.

reconstruction 784 units
A

100 units decoder

T

code vector 20 units

!

100 units encoder

T

iInput 784 units




Why Autoencoders?

@ Map high-dimensional data to two dimensions for visualization
@ Compression (i.e. reducing the file size)
o Note: this requires a VAE, not just an ordinary autoencoder.

@ Learn abstract features in an unsupervised way so you can apply them
to a supervised task

e Unlabled data can be much more plentiful than labeled data

@ Learn a semantically meaningful representation where you can, e.g.,
interpolate between different images.
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each pixel (discrete).



Why are they useful?

+ Provides low dimensional latent

* Usetul for V!
* Provides discrete representations
+ Usetul for M

+ We'll see soon



GPT
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GPT Training

+ Assume a set of N tokens

* Given a T length sequence
* Take a 0:t-1 seqgeuence
* Pass it through the model

* Predict 1:t sequence through a softmax layer



GPT From Encoder-Decoder View

Encode a sequence into a fixed-sized vector

le film était bon [STOP]

H OO

the movie was great



GPT From Encoder-Decoder View

» Generate next word conditioned on previous word as well as hidden state

» W size is |vocab| x |hidden state|, softmax over entire vocabulary
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Decoder has separate
parameters from encoder, so
this can learn to be a language
model (produce a plausible next
word given current one)



Inference - Let’s talk about attention

» Encoder hidden states capture
contextual source word identity
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Self-attention

» Each word forms a “guery” which then
computes attention over each word
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— the movie was great
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> Multiple “heads” analogous to different convolutional filters. Use
parameters W and Vi to get different attention values + transform vectors

Vaswani et al. (2017)



Bidirectional Encoder Representations from Transformers(BERT)

» ELMo is a unidirectional model (as is GPT): we can concatenate two
unidirectional models, but is this the right thing to do?

» ELMo reprs look at each d_irection in isolation; BERT looks at them jointly

“performer” 4—[ ELMo ]

[ ELMo }—»L “ballet dancer”

A stunning ballet dancer, Copeland is one of the best performers to see live.

[ BERT ]
v

“ballet dancer/performer”
_ Devlin et al. (2019)




Bidirectional Encoder Representations from Transformers(BERT)

» How to learn a “deeply bidirectional” model? What happens if we just
replace an LSTM with a transformer?

ELMo (Language Modeling) BERT
visited Madag. yesterday .. visited Madag. yesterday ..
* > > * > * (—1 "T‘ \~~.'~?_? ____________ ? ~
T T : P
| > > > \‘v" T
1 1 . 1 )

| | | John visited Madagascar yesterday
» Transformer LMs have to be “one-
sided” (only attend to previous

John visited Madagascar yesterday tokens), not what we want




Masked Sequence Modelling

» How to prevent cheating? Next word prediction fundamentally doesn't
work for bidirectional models, instead do masked language modeling

» BERT formula: take a chunk of
text, predict 15% of the tokens

» For 80% (of the 15%),
replace the input token with
[MASK]

» For 10%, replace w/random

» For 10%, keep same

Madagascar
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e e s
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John visited [MASK] yesterday

John visited of yesterday

John visited Madagascar yesterday

Devlin et al. (2019)



Masked Sequence Modelling

» Input: [CLS] Text chunk 1 [SEP] Text chunk 2

» 50% of the time, take the true next chunk of text, 50% of the time take a
random other chunk. Predict whether the next chunk is the “true” next

» BERT objective: masked LM + next sentence prediction

NotNext Madagascar enjoyed like
t 4 i
Transformer J
{ Transformer }

[CLS] John visited [MASK] yesterday and really all it [SEP] /like Madonna.
Devlin et al. (2019)



Why are we learning this?

* Difterent ways of sequence modeling
* Important for model - M
* Different ways have different drawbacks

* Engineering decisions!



How to train your world model?



Dreamer
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Dreamer

1. Learning the dynamics model 2. Learning policy 3. Collect experience



Dreamer

Initialize policy 0, ¢, yrandomly and D, with random trajectories {(ot(i), at(i), rt(i))tT=] :

1. Dynamics learning:
1. Sample trajectories from D, and infer states from observations using the representation
model: s, ~ py(s,| $,_1,a,_1, 0).
2. Train the dynamics model using variational inference and update 6.
2. Actor-critic learning from imagined rollouts:
1. Imagine trajectories seeded froms, : {s,, 7, a, v}

2. Compute value targets V,(s,).

H
3. Updateactorp —» ¢ +aV, Z V,(s,)
T

H
4. Update critic:yy — v — aVWZ ||V,,, - V()
T

3. Environment interaction
1. Deploy the actor in the environment adding exploration noise to the predicted actions and

update D,



Dreamer

Initialize policy 6, ¢, w randomly and D,,,, with random trajectories {(ot(i), at(i), ’}(i))tT=1 :
1. Dynamics learning:
1. Sample trajectories from D, and infer states from observations using the representation
model: S, ~ po(St| S 14415 Ot)‘
2. Trainthe dynamics model using variational inference and update 6.
2. Actor-critic learning from imagined rollouts:

: : : : t+H
1. Imagine trajectories seeded froms, : {s_, 7, a,Vv,}

T=1
2. Compute value targets V,(s,).
H

3. Updateactor¢p > ¢ +aV, Z V,(s,)

H
4. Update critic:yy = y — aV,,,Z v, = V(s
T

3. Environment interaction
1. Deploy the actor in the environment adding exploration noise to the predicted actions and

update D,



Dreamer

Algorithm 1: Dreamer

Initialize dataset D with S random seed episodes. Model components
Initialize neural network parameters €, ¢, 1) randomly. Representation py(s; | S¢.1,a¢-1,0¢)
while not converged do Transition qo(St | 8t-1,a4.1)
for update step c = 1..C do Reward go(rs | s¢)
// Dynamics learning Action qs(as | st)
Draw B data sequences {(as, 04, 7¢)}r" ~ D, Value Uy (S¢)

Compute model states s; ~ pg(s; | St—1,a1—1,0¢).

Update 6 using representation learning. Hyper parameters

Seed episodes

Collect interval
Imagine trajectories {(s... a..)}: T from each s;. .
g j {(sr,ar)}75s t  Batch size

Predict rewards E (go (7 | s,)) and values vy (s, ).
Compute value estimates V (s, ) via Equation 6. Sequ.encc? length.
Imagination horizon

Update ¢ + ¢ + aVy St Va(s,). Leamning rate

// Behavior learning

T=t
Update ) ) — aVy S5 Loy (s,)-Via(s,)]|”.

// Environment interaction

01 < env.reset ()

for time stept = 1.7 do

Compute s; ~ pg(s¢ | S¢—1,as—1,04) from history.
Compute a; ~ g4(a; | s¢) with the action model.
Add exploration noise to action.

rt,0¢41 < env.step (ay) .

Add experience to dataset D <— D U {(o4, as,7¢)7—1 }-

S NI QWM




Dreamer - What's there?

* M - latent state space model
* V - latent state space model

+ (C - actor critic model



Dreamer - What's missing?

* No discrete representation

* We saw discrete representation in VQ-VAE!



Dreamer V2

* Adds stochasticity through discrete latents
+ Two representation for states s,
* Deterministic part (from previous approaches)
* Stochastic part
+ 32 vectors from 32 values
# Combination of reinforce and straight-through gradients

* KL balancing



Dreamer V2

32 categoricals
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IRIS

* We saw discrete representations

+ Can we use GPT? &



Transformers are sample efficient world models

* Encode observations in a discrete space

* Use 0,..T-1 discrete tokens and actions to generate token at T, and predict
reward and termination

* Using the WM, learn a policy on the decoded observation



T'ransformers are sample efficient world models




IRIS - What’s there?

* M -GPT2
+ V - VAE

# (C - Actor critic model



IRIS - Issues

* Slow Imagine step

* Imagine step has N * H steps where

* Next token prediction for N tokens (1 obs/state = N tokens)
* Next state prediction for H states

* Does not retain any state information



Faster imagination - two approaches

* Less number of tokens for imagination

* Non-autoregressive generation



1VideoGPT | View (V)

* Context encoder and decoder
« N =16 tokens for 1 : T, observation
1:N
+ 3,7 =EJ0)
» Uses larger token numbers to learn the underlying structure (e.g., physics, motion, etc.)

 Dynamics encoder and decoder

« Used for tokenizing observations for t > 1,

« N =4tokens for T+ 1 : T observations

o z}:” = Ep(at | OI:TO), we condition on context observations

* Uses cross-attention to achieve conditioning



1VideoGPT | View (V)

* Context encoder and decoder
« N =16 tokens for 1 : T, observation
1:N
+ 3,7 =EJ0)
» Uses larger token numbers to learn the underlying structure (e.g., physics, motion, etc.)

 Dynamics encoder and decoder

« Used for tokenizing observations for t > 1,

To T
» N =4 tokens for T, + 1 : T observations Lukenizer = Y Lvaoan(0s; Ec(-), De()) + Y Lvacan(0s; Ep(+lo1:m,), Dp(-|o11,))
t=1 t=To+1

o z}:” = Ep(at | OI:TO), we condition on context observations

* Uses cross-attention to achieve conditioning



1VideoGPT | View (V)

N \

I
\

(a) Compressive tokenization



1VideoGPT | Model (M)

+ N tokens for each context observation

* n tokens for each dynamics observation

* One extra “slot’ token for each observation

+ Total tokens=(N+ )Ty + (n+ 1)(T -1, — 1



1VideoGPT | Model (M

T4

Reward




1VideoGPT - What’s there?

* V- VQGAN for image tokenization
+ Context encoder and decoder

* Dynamics encoder and decoder

* M -GPT

* LLAMA architecture
+ GPT-2 model size



MaskGI'T

* Autoregressive token generation is not the best for image

 Can we generate tokens taking advantage of the spatial multi-dimensionality?

 Faster to sample

» Better fidelity

e Can we use ideas from BERT? ¢



MaskGI'T Training

e Learn to tokenize using VQ-GAN
« Mask n out of N tokens and predict the tokens
 There is a special [MASK] token

* Loss -> CE only on the masked tokens

« n € [0,N] and monotonous function of some ratio r



MaskGIT Inference

o Start with N [MASK] tokens
e Fort=0to T

* Predict the tokens using bidirectional transformer

» Take n, out N high confidence tokens (n; = N)

 Replace the mask tokens with these tokens



Draft and Revise

+ Uses MaskGIT for model inference



Draft and Revise View (V)

« Step 1:Turn a image into /1 X w continuous latents

» Step 2: Turn those into discrete latents from codebook €

o Step 3: Find the difference.

» Go to step 2 if numbers of codes < D



Draft and Revise View (V)

Tokenizing (RQ-VAE)

Stacked Code Map

RGB Image (Hx W x D)



Draft and Revise Model (M)

Similar to BERT training Random Masking

We construct a masked embedding sequence over
time dimension D o0 i\ﬂ |

The mask scheduling function is a strictly increasing
function from 0 — 1

The input to the transformer u, — pEy(m) + | Zi=1 &Sna) ifm, =0

\e[MASK] if m, = 1

Sequence of Code Stacks

The output  (hi, -+ ,hy) = ;"% (ug, -+ ,un). (N x D)




Draft and Revise Model (M)

Depth Transformer

* Autoregressive training

» We predict v, ; from Vul....nd=1)

h ifd=1

* Input to the transformer vna =PEp(d) + {fg,—;l e(Sna) ifd>1

depth

e Qutput of the transformer pni = """ (Va1 -+, Vna)

» We find §, ; from sampling the softmax of p,



Draft and Revise Training

Tokenize samples

Sample masks

Pass masked tokens and retrieve S;;

A\

From 51y, N1» -+ -91(=1).....N@—1)» Predict
Slt,...N

Perform CE loss on masked code-stacks

Contextual RQ-Transformer

o =

(" Depth .
Bidirectional Unidirectional €[mask|
S11|/S12| [S13 ] [] [
S21 Iszz
u) (NN
‘ @-lg T Depth Transformer
Bidirectional
Spatial Transformer Y i
\_ ﬁ




Draft and Revise Inference

o Start with all masked positions

 Draft: Make a draft code-stack using bidirectional spatial transformer
and depth transformer

 Revise: Update the code-stack conditioned on the previous one

[ Draft | rRevIse




Draft and Revise - What's there?

+ V - RQ-VAE
* M - GPT and BERT



More...

+ Better Model

+ Newer SSMs (54, S5, etc.)

* Better representation for observations
+ CURL

+ STORM



More...

* Hierarchical World Modeling

* Multi time scale world models using Gaussian marginalization and
conditioning (MTS3)

* Hierarchical actors using goal-conditioning
+ Similar ideas as before

* But, for more levels



T'hank you

+ Zarit Ikram
* Visiting Researcher, NUS Al Institute

* Email : zzzarif.ikram@gmail.com

* Web: zarifikram.github.io
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