Reinforcement Learning in Age of Large Scale Foundation Models

Invited Lecturer : Zarif Ikram

Lecture 6

How to Train Your World Models

Introduction

- * Model Predictive Control (MPC)
- Model Based Reinforcement Learning (MBRL)
- * Model Based Reasoning

Why World Models?

Model-based reasoning for robotic control

Fazeli et al. (2019). See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion. Science Robotics, 4(26).

Model-based reasoning for human-Al interaction

(a) Car merges *ahead* of human; (b) Car *backs up* at 4way stop; anticipates human *braking* anticipates human proceeding

Sadigh et al. (2016). Planning for autonomous cars that leverage effects on human actions. RSS 2016.

Model-based reasoning for science

Segler, Preuss, & Waller (2018). Planning chemical syntheses with deep neural networks and symbolic AI. Nature, 555(7698).

Model-based reasoning for games

Silver et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484.

Model, View, Controller

At each time step, our agent receives an **observation** from the environment.

World Model

The Vision Model (V) encodes the high-dimensional observation into a low-dimensional latent vector.

The Memory RNN (M) integrates the historical codes to create a representation that can predict future states.

A small **Controller (C)** uses the representations from both **V** and **M** to select good actions.

The agent performs **actions** that go back and affect the environment.

What is a model?

* Definition: a model is a representation that explicitly encodes knowledge about the structure of the environment and task.

A transition/dynamics model: s_{t+1} A model of rewards: $r_{t+1} = f_r(s_{t+1})$

- An inverse transition/dynamics mod
- A model of distance: $d_{ij} = f_d(s_i,$
- A model of future returns: $G_t = Q_t$

$$s_t, a_t)$$
 Typically what is meant by the model in model-based RL

del:
$$a_t = f_s^{-1}(s_t, s_{t+1})$$
 (s_j)

$$Q(s_t, a_t)$$
 or $G_t = V(s_t)$

Where does the model fit into the picture?

1. Simulating the environment

Where does the model fit into the picture?

1. Simulating the environment

2. Assisting the learning algorithm s, r T Environment

Where does the model fit into the picture?

Why do we want to learn a model?

Simulating complex physical dynamics (too expensive)

Planning with real robots (too expensive, too risky)

- * Observation *o_t* can high dimensional
- vector Z_t

* Compresses each o_t it receives at time step t into a low dimensional latent

* This compressed representation can be used to reconstruct the original \hat{o}_t

(]-(]ontroler

- * The Controller (C) model is responsible for determining the course of actions to take in order to maximize the expected cumulative reward of the agent during a rollout of the environment.
- * It uses V and M to rollout the environment
 - * Like a dream!
- * Can be (almost) any RL algorithm

Autoencoders

- An autoencoder is a feed-forward neural net whose job it is to take an input x and predict x.
- To make this non-trivial, we need to add a bottleneck layer whose dimension is much smaller than the input.

reconstruction

code vector

Why Autoencoders?

- Map high-dimensional data to two dimensions for visualization
- Compression (i.e. reducing the file size)
 Note: this requires a VAE, not just an ordinary autoencoder.
- Learn abstract features in an unsupervised way so you can apply them to a supervised task
 - Unlabled data can be much more plentiful than labeled data
- Learn a semantically meaningful representation where you can, e.g., interpolate between different images.

VQ-VAE

- Provides low dimensional latent * Useful for V!
- * Provides discrete representations
 - * Useful for M
 - * We'll see soon

Why are they useful?

(P')

- * Assume a set of N tokens
- * Given a T length sequence
 - * Take a 0:t-1 sequence
 - * Pass it through the model
 - * Predict 1:t sequence through a softmax layer

CPT From Encoder-Decoder View

Encode a sequence into a fixed-sized vector

GPT From Encoder-Decoder View

- W size is |vocab| x |hidden state|, softmax over entire vocabulary

Generate next word conditioned on previous word as well as hidden state

$$P(y_i | \mathbf{x}, y_1, \dots, y_{i-1}) = \operatorname{softmax}(W\bar{h})$$

$$P(y|\mathbf{x}) = \prod_{i=1}^{n} P(y_i | \mathbf{x}, y_1, \dots, y_{i-1})$$
Decoder has separate
parameters from encoder, so
this can learn to be a language
model (produce a plausible next
word given current one)

Inference - Let's talk about attention

- Encoder hidden states capture contextual source word identity
- Decoder hidden states are now mostly responsible for selecting what to attend to
- Doesn't take a complex hidden state to walk monotonically through a sentence and spit out word-by-word translations

Self-attention

Each word forms a "query" which then computes attention over each word

$$lpha_{i,j} = ext{softmax}(x_i^ op x_j)$$
 scalar $x_i' = \sum_{j=1}^n lpha_{i,j} x_j$ vector = sum of scalar

Multiple "heads" analogous to different convolutional filters. Use

parameters W_k and V_k to get different attention values + transform vectors

Vaswani et al. (2017)

Bidirectional Encoder Representations from Transformers(BERT)

- ELMo is a unidirectional model (as is GPT): we can concatenate two unidirectional models, but is this the right thing to do?
- ELMo reprs look at each direction in isolation; BERT looks at them jointly

A stunning ballet dancer, Copeland is one of the best performers to see live.

ELMo

"ballet dancer"

"ballet dancer/performer"

Devlin et al. (2019)

Bidirectional Encoder Representations from Transformers(BERT)

replace an LSTM with a transformer? ELMo (Language Modeling)

Madag. yesterday visited

John

visited Madagascar yesterday

How to learn a "deeply bidirectional" model? What happens if we just

John visited Madagascar yesterday

Transformer LMs have to be "onesided" (only attend to previous tokens), not what we want

- BERT formula: take a chunk of text, predict 15% of the tokens
 - For 80% (of the 15%), replace the input token with [MASK]
 - For 10%, replace w/random
 - For 10%, keep same

Masked Sequence Modelling

How to prevent cheating? Next word prediction fundamentally doesn't work for bidirectional models, instead do masked language modeling

Masked Sequence Modelling

- Input: [CLS] Text chunk 1 [SEP] Text chunk 2
- 50% of the time, take the true next chunk of text, 50% of the time take a random other chunk. Predict whether the next chunk is the "true" next BERT objective: masked LM + next sentence prediction

yesterday really all it [SEP] / like Madonna. and Devlin et al. (2019)

- * Different ways of sequence modeling
 - Important for model M
- * Different ways have different drawbacks
 - * Engineering decisions!

Why are we learning this?

How to train your world model?

encode images

imagine ahead

predict rewards

predict values

0

Dreamer

1. Learning the dynamics model

Dreamer

2. Learning policy

3. Collect experience

Initialize policy θ , ϕ , ψ randomly and D_{env} with random trajectories $\{(o_t^{(i)}, a_t^{(i)}, r_t^{(i)})_{t=1}^T\}$.

Dynamics learning: 1.

- model: $s_t \sim p_{\theta}(s_t | s_{t-1}, a_{t-1}, o_t)$.
- 2. Train the dynamics model using variational inference and update θ .

2. Actor-critic learning from imagined rollouts:

- 1. Imagine trajectories seeded from $s_t : \{s_{\tau}, r_{\tau}, a_{\tau}, v_{\tau}\}_{\tau=t}^{t+H}$
- 2. Compute value targets $V_{\lambda}(s_{\tau})$. 3. Update actor $\phi \rightarrow \phi + \alpha \nabla_{\phi} \sum_{\tau}^{H} V_{\lambda}(s_{\tau})$ 4. Update critic: $\psi \rightarrow \psi \alpha \nabla_{\psi} \sum_{\tau}^{\tilde{\tau}} \|v_{\psi} V_{\lambda}(s_{\tau})\|$

Environment interaction 3.

1. update D_{env}

)reamer

1. Sample trajectories from D_{env} and infer states from observations using the representation

Deploy the actor in the environment adding exploration noise to the predicted actions and

Initialize policy θ , ϕ , ψ randomly and D_{env} with random trajectories $\{(o_t^{(i)}, a_t^{(i)}, r_t^{(i)})_{t=1}^T\}$.

1. **Dynamics learning:**

- model: $s_t \sim p_{\theta}(s_t | s_{t-1}, a_{t-1}, o_t)$.
- 2. Train the dynamics model using variational inference and update θ .

2. Actor-critic learning from imagined rollouts:

- 1. Imagine trajectories seeded from $s_t : \{s_{\tau}, r_{\tau}, a_{\tau}, v_{\tau}\}_{\tau=t}^{t+H}$
- 2. Compute value targets $V_{\lambda}(s_{\tau})$. 3. Update actor $\phi \rightarrow \phi + \alpha \nabla_{\phi} \sum^{H} V_{\lambda}(s_{\tau})$
- 4. Update critic: $\psi \to \psi \alpha \nabla_{\psi} \sum_{\tau}^{T} \|v_{\psi} V_{\lambda}(s_{\tau})\|$

3. Environment interaction

1. update D_{env}

)reamer

1. Sample trajectories from D_{env} and infer states from observations using the representation

Deploy the actor in the environment adding exploration noise to the predicted actions and

Algorithm 1: Dreamer

Initialize dataset \mathcal{D} with S random seed episod Initialize neural network parameters θ, ϕ, ψ rates while not converged do

for update step c = 1..C do

// Dynamics learning Draw B data sequences $\{(a_t, o_t, r_t)\}_{t=1}^k$ Compute model states $s_t \sim p_{\theta}(s_t \mid s_t)$ Update θ using representation learning // Behavior learning Imagine trajectories $\{(s_{\tau}, a_{\tau})\}_{\tau=t}^{t+H}$ from Predict rewards $\mathrm{E}(q_{ heta}(r_{ au} \mid s_{ au}))$ and values Compute value estimates $V_{\lambda}(s_{\tau})$ via Update $\phi \leftarrow \phi + \alpha \nabla_{\phi} \sum_{\tau=t}^{t+H} V_{\lambda}(s_{\tau})$ Update $\psi \leftarrow \psi - \alpha \nabla_{\psi} \sum_{\tau=t}^{t+H} \frac{1}{2} \| v_{\psi}(s) \|$ Environment interaction $o_1 \leftarrow \text{env.reset}()$ for time step t = 1..T do Compute $s_t \sim p_{\theta}(s_t \mid s_{t-1}, a_{t-1}, o_t)$ from history. Compute $a_t \sim q_{\phi}(a_t \mid s_t)$ with the action model. Add exploration noise to action. $r_t, o_{t+1} \leftarrow \texttt{env.step}(a_t)$. Add experience to dataset $\mathcal{D} \leftarrow \mathcal{D} \cup \{(o_t, a_t, r_t)_{t=1}^T\}$.

Dreamer

			_
des.	Model components		
indomly.	Representation	$p_{ heta}(s_t \mid s_{t ext{-}1}, a_{t ext{-}1}, a_{t ext{-}1})$	(v_t)
	Transition	$q_{ heta}(s_t \mid s_{t extsf{-}1}, a_{t extsf{-}1})$	
	Reward	$q_{ heta}(r_t \mid s_t)$	
	Action	$q_{\phi}(a_t \mid s_t)$	
$\sum_{k=k}^{k+L} \sim \mathcal{D}.$	Value	$v_{\psi}(s_t)$	
$a_{t-1}, a_{t-1}, o_t).$	Hyper paramet	ers	
5.	Seed episodes		S
	Collect interval	(C
om each s_t .	Batch size		В
Fountion 6	Sequence length		L
Equation 0.	Imagination hori	zon	H
$(\mathbf{v}_{1}) = \mathbf{V} \cdot (\mathbf{v}_{1}) ^{2}$	Learning rate		lpha
$\nabla \tau J^{-} \vee \lambda \langle \Im \tau J \cdot$			

- * M latent state space model
- * V latent state space model
- * C actor critic model

Dreamer - What's there?

- * No discrete representation
 - * We saw discrete representation in VQ-VAE!

Dreamer - What's missing?

Dreamer V2

- * Adds stochasticity through discrete latents
- * Two representation for states S_t
 - * Deterministic part (from previous approaches)
 - Stochastic part
 - * 32 vectors from 32 values
- * Combination of reinforce and straight-through gradients
- * KL balancing

Dreamer V2

- * We saw discrete representations
- * Can we use GPT? 🤪

IRIS

Transformers are sample efficient world models

- * Encode observations in a discrete space
- reward and termination
- * Using the WM, learn a policy on the decoded observation

* Use 0,...T-1 discrete tokens and actions to generate token at T, and predict

Transformers are sample efficient world models

IRIS - What's there?

* M - GPT2

- * V VAE
- * C Actor critic model

- * Slow Imagine step
 - * Imagine step has N * H steps where
 - * Next token prediction for N tokens (1 obs/state = N tokens)
 - * Next state prediction for H states
- Does not retain any state information

Faster imagination - two approaches

- * Less number of tokens for imagination
- * Non-autoregressive generation

iVideoGPT | View(V)

- Context encoder and decoder
 - N = 16 tokens for $1 : T_0$ observation
 - $z_t^{1:N} = E_c(o_t)$
 - Uses larger token numbers to learn the underlying structure (e.g., physics, motion, etc.)
- Dynamics encoder and decoder lacksquare
 - Used for tokenizing observations for $t > T_0$
 - N = 4 tokens for $T_0 + 1$: T observations
 - $z_t^{1:n} = E_p(o_t | o_{1:T_0})$, we condition on context observations
 - Uses cross-attention to achieve conditioning

iVideoGPT | View(V)

- Context encoder and decoder
 - N = 16 tokens for $1 : T_0$ observation
 - $z_t^{1:N} = E_c(o_t)$
 - Uses larger token numbers to learn the underlying structure (e.g., physics, motion, etc.)
- Dynamics encoder and decoder lacksquare
 - Used for tokenizing observations for $t > T_0$
 - N = 4 tokens for $T_0 + 1$: T observations $\mathcal{L}_{\text{tokeniz}}$
 - $z_t^{1:n} = E_p(o_t | o_{1:T_0})$, we condition on context observations
 - Uses cross-attention to achieve conditioning

$$\sum_{t=1}^{T_0} \mathcal{L}_{\text{VQGAN}}(o_t; E_c(\cdot), D_c(\cdot)) + \sum_{t=T_0+1}^T \mathcal{L}_{\text{VQGAN}}(o_t; E_p(\cdot|o_{1:T_0}), D_p(\cdot|o_{1:T_0})) + \sum_{t=T_0+1}^T \mathcal{L}_{\text{VQGAN}}(o_t; E_p(\cdot|o_{1:T_0})) + \sum_{t=T_0+1}^T \mathcal{L}_{\text{VQGAN}}(o_t; E_p(\cdot|o_{1:T_0}), D_p(\cdot|o_{1:T_0})) + \sum_{t=T_0+1}^T \mathcal{L}_{\text{VQGAN}}(o_t; E_p(\cdot|o_{1:T_0})) + \sum_{t=T_0+1}^T \mathcal{L}_{\text{VQGAN}}(o_t; E$$

 $(\Gamma_0))$

iVideoGPT | View (V)

(a) Compressive tokenization

- * N tokens for each context observation
- * n tokens for each dynamics observation
- * One extra 'slot' token for each observation
- * Total tokens = $(N + 1)T_0 + (n + 1)(T T_0) 1$

- * V VQGAN for image tokenization
 - * Context encoder and decoder
 - * Dynamics encoder and decoder
- * M GPT
 - * LLAMA architecture
 - * GPT-2 model size

iVideoGPT - What's there?

- Autoregressive token generation is not the best for image
- Can we generate tokens taking advantage of the spatial multi-dimensionality?
 - Faster to sample
 - Better fidelity
- Can we use ideas from BERT?

MaskGIT

- Learn to tokenize using VQ-GAN
- Mask n out of N tokens and predict the tokens
 - There is a special [MASK] token
 - Loss -> CE only on the masked tokens
 - $n \in [0,N]$ and monotonous function of some ratio r

MaskGIT Training

- Start with N [MASK] tokens
- For t = 0 to T
 - Predict the tokens using bidirectional transformer
 - Take n_t out N high confidence toke
 - Replace the mask tokens with these tokens

MaskGIT Inference

$$ens (n_T = N)$$

Draft and Revise

* Uses MaskGIT for model inference

Draft and Revise View (V)

- Step 1:Turn a image into $h \times w$ continuous latents
- Step 2: Turn those into discrete latents from codebook ${\mathscr C}$
- Step 3: Find the difference.
 - Go to step 2 if numbers of codes < D

Draft and Revise View (V)

Tokenizing (RQ-VAE)

Draft and Revise Model (M)

- Similar to BERT training
- We construct a masked embedding sequence over time dimension
- The mask scheduling function is a strictly increasing function from $0 \rightarrow 1$
- The input to the transformer $\mathbf{u}_n = PE_N(\mathbf{v})$
- The output $(\mathbf{h}_1, \cdots, \mathbf{h}_N) = f_{\theta}^{\text{spatial}}(\mathbf{u}_1,$

$$(n) + egin{cases} \sum_{d=1}^{D} \mathbf{e}(\mathbf{S}_{nd}) & ext{if } \mathbf{m}_n = 0 \ \mathbf{e}_{[MASK]} & ext{if } \mathbf{m}_n = 1 \ \cdots, \mathbf{u}_N \end{pmatrix}.$$

Random Masking

Draft and Revise Model (M)

Depth Transformer

- Autoregressive training
- We predict v_{nd} from $v_{n1,\ldots,n(d-1)}$
- Input to the transformer $\mathbf{v}_{nd} = PE_D(d)$ +
- Output of the transformer $\mathbf{p}_{nd} = f_{\theta}^{\text{depth}}$
- We find S_{nd} from sampling the softmax of p_{nd}

$$+ \begin{cases} \mathbf{h}_{n} & \text{if } d = 1\\ \sum_{d'=1}^{d-1} \mathbf{e}(\mathbf{S}_{nd'}) & \text{if } d > 1 \end{cases}$$

$$^{\text{th}}(\mathbf{v}_{n1}, \cdots, \mathbf{v}_{nd})$$

Draft and Revise Training

- Tokenize samples
- Sample masks
- Pass masked tokens and retrieve S_{11} N_1
- From $S_{11,...,N1}$, ..., $S_{1(t-1),...,N(t-1)}$, predict S_{1t} Nt
- Perform CE loss on masked code-stacks

Draft and Revise Inference

- Start with all masked positions
- **Draft:** Make a draft code-stack using bidirectional spatial transformer and depth transformer
- **Revise:** Update the code-stack conditioned on the previous one

Draft and Revise - What's there?

* V - RQ-VAE

* M - GPT and BERT

* Better Model

- * Newer SSMs (S4, S5, etc.)
- * Better representation for observations
 - * CURL
 - * STORM

More...

- * Hierarchical World Modeling
 - * Multi time scale world models using Gaussian marginalization and conditioning (MTS3)
- * Hierarchical actors using goal-conditioning
 - * Similar ideas as before
 - But, for more levels

More...

Thank you

* Zarif Ikram

- * Visiting Researcher, NUS AI Institute
- * Email : <u>zzzarif.ikram@gmail.com</u>
- * Web: <u>zarifikram.github.io</u>

••