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Memorable experiences

* Humans have the ability to identify memorable experiences

* The memorable experiences of a variety of machine-learning
models can be identified with a single Bayesian principle

Ridge Regression Gaussian Process Neural Network




Memorable experiences

* Humans have the ability to identify memorable experiences

* The memorable experiences of a variety of machine-learning
models can be identified with a single Bayesian principle

Logistic Regression Gaussian Process Neural Network




Related Work

Influential datapoints
~— Regression diagnostics [1]

~ Influence function [2]

Sparse Gaussian Processes

~ Variational learning of inducing inputs [3]
~ Subset-of-data approaches [4,5]
Support vectors [6]

Coresets [7]

Memorable experiences unify and generalise these concepts by using a single
Bayesian principle.

[1] Cook, R. D., & Weisberg, S. Residuals and influence in regression. New York: Chapman and Hall. 1982.

[2] Koh, P. W., & Liang, P. Understanding black-box predictions via influence functions. ICML, 2017.

[3] Titsias, M. Variational learning of inducing variables in sparse Gaussian processes. AISTATS, 2009.

[4] Lawrence, N., et. al. Fast sparse Gaussian process methods: The informative vector machine. NeurlPS, 2003.
[6] Burt, D. R., et. al. Convergence of Sparse Variational Inference in Gaussian Processes Regression. JMLR, 2020.
[6] Vapnik, V. N. An overview of statistical learning theory. |IEEE transactions on neural networks, 1999.

[7] Borsos, Z., et. al. Coresets via Bilevel Optimization for Continual Learning and Streaming. NeurlPS, 2020.




Ridge Regression
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By Lagrangian duality and a variant of the Representer theorem [1]:
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Ridge leverage scores: [2]
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[1] Scholkopf, B., et. al. A generalized representer theorem. In International conference on computational learning
theory. Springer, 2001,
[2] Alaoui, A. E., & Mahoney, M. W. Fast randomized kernel methods with statistical guarantees. NeurlPS, 2015.




Rldge RegreSSion (and logistic regression)

residual leverage score




Gaussian Process

> Eq(s:) logp(yi | £:)] ~ Dicw la(f) || p(F)

Gaussian posterior approximation: ( (f) L= N(f ‘ 1, V)
Prior: p(f) = N(f ‘ 0, K)

Fixed point of the variational objective:

residual m, = Ko, Ay += ]E'q*(fi) [—vfz-g (yia fz)]
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C(ys, fi) == —logp(y: | fi)

Score

Khan, M.E., et. al. (2013). Fast dual variational inference for non-conjugate
latent gaussian models. In International conference on machine learning.



Gaussian Process

residual leverage score




Neural Network
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Gaussian posterior approximation: q(w) = N(W ’ 1, V)

Solution of the Bayesian learning problem:

residual  m, — J7 e, s = =Vl (yi, fi)
V,=[3ITAJ+1"

leverage B — [JJT (JJT —I—A*)_l}

score 11

Khan, M. E., et. al. (2019). Approximate inference turns deep networks into
gaussian processes. In Advances in neural information processing systems.



Neural Network

residual leverage score lambda
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Characterizing memorable experiences

* Choice of criterion depends on application, for example:

~ In lifelong learning scenario (with no task boundaries),
examples at boundary of data space may be preferred
— leverage score

~ ldentifying examples for further inspection (e.g.
mislabelled) — residual
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Characterizing memorable experiences

* Continual learning with task boundaries, seek to maintain
decision boundary as move to new tasks — A

MNIST Most memorable Least memorable
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. Pan, P., et. al. Continual deep learning by functional regularisation of

E memorable past. NeurlPS, 2020.



Characterizing memorable experiences

* Continual learning with task boundaries, seek to maintain
decision boundary as move to new tasks — A
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Memory Damage

* Memorable examples are the most impactful to model performance
* Demonstrated by removing examples in order of most to least memorable,

retraining from scratch and evaluating the model on a fixed test set.

MNIST

Random
Test set
performance
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Conclusion

* The memorable experiences of a variety of machine-learning
models can be identified with a single Bayesian principle.

Paper coming soon!
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