Masked Generative Priors Improve World Models Sequence **Modelling Capabilities** ICLR 2025 Workshop on World Models: Understanding, Modelling and Scaling, 2025

Cristian Meo* Mircea Tudor Lică* Zarif Ikram* **Akihiro Nakano Vedant Shah Aniket Rajiv Didolkar Dianbo Liu Anirudh Goyal Justin Dauwels**

Outstanding Paper Award!

World models

- Deep RL has achieved breakthrough performance in complex tasks.
- World models enable sample efficiency via "imagination"

h performance in complex tasks. ency via "imagination"

Basic Training Formula... For visual observations

- Pixel space encoder
 - Turns observations to latent embeddings
- Sequence modeler
 - $f: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$
- Learnt end-to-end through
 - Some reconstruction such as observation, latent, etc.

Autoregressive Transformer As a sequence modeller

- Unidirectional generation process
 - Unable to fully capture global contexts
- e.g., STORM[1],
 - $h_t \rightarrow z_{t+1}$ is a MLP
 - Predicting categorical logits

What could go wrong?

- No global information
- Only one chance to predict Z_t
 - What if $logit_1$ and $logit_2$ need to be distinct?
- Result=Predicting infeasible states!

Masked Generative Modelling

- TECO [2] introduces MaskGIT[3] prior $p_{\phi}(z_{t+1} \mid h_t)$
 - draft-and-revise predicts the next discrete representations
- Uses global context
 - "Safer" approach to predict Z_t
 - One step at a time (after looking at current global prediction)

Yan, Wilson, et al. "Temporally consistent transformers for video generation." International Conference on Machine Learning. PMLR, 2023. Chang, Huiwen, et al. "Maskgit: Masked generative image transformer." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.

World model w/ masked generative prior tl;dr: we replace a MLP module with a MaskGIT module

- Concatenate hidden state h_t with masked latent representation $m_t \cdot z_t$
 - Posterior latent prediction from masked latent Z_t ullet
- Minimize KL div. Between prior and post.
 - Similar to previous methods \bullet

World model w/ masked generative prior tl;dr: we replace a MLP module with a MaskGIT module

- During inference
 - perform draft-and-revise using masked decoding
- Don't generate everything at once
 - or do next-token-prediction
- Mask tokens, predict the next ones, and revise as needed

Results **Better modeling capabilities!**

STORM

GIT-STORM

Results **Better modeling capabilities!**

STORM

GIT-STORM

Results Better modeling capabilities!

Game	FVD (↓)		Perplexity (†)		
	STORM	GIT-STORM	STORM	GIT-STORM	
Boxing	1458.32	1580.32	49.24	54.95	
Hero	381.16	354.16	10.55	30.25	
Freeway	105.45	80.33	33.15	67.92	

Taala	FVD (↓)		Perplexity (†)	
TASK	STORM	GIT-STORM	STORM	GIT-STORM
Cartpole Balance Sparse	2924.81	1892.44	1.00	3.76
Hopper Hop	4024.11	3458.19	3.39	22.59
Quadruped Run	3560.33	1000.91	1.00	2.61

Results ... Leading to better policy

- **19%** higher human mean than STORM
- Over **20%** improved IQM than STORM \bullet
- Over **50%** probability of improvement to all lacksquarebaselines

Results Works for continuous action environments too

- Transformer-based world models to continuous action spaces (DMC Suite) was unaddressed by IRIS, TECO or the original STORM
- GIT-STORM reports results on DMC benchmark
 - Over **50%** probability of improvement to STORM, PPO, and SAC •

Limitations and Future Works

- Our method falls short on continuous action space benchmarks, compared to GRU based approaches
 - Why does transformer based methods fails to capture continuous action space worlds?
- We can use only one iteration for the Draft-and-Revise decoding scheme
 - How to fully exploit the advantages of this decoding scheme?

Summary

- World modeling approaches involve categorical distribution for latents
- Treat prior distributions as "2d grid"
 - Just like images
- Learn to uncover "mass" for the distributions using maskGIT
 - Refine prior distributions during inference

Thank You!

Zarif Ikram

Undergraduate Visiting Scholar, NUS Incoming PhD Student, USC Viterbi

Cristian Meo PhD Student, TU Delft

