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World models

 Deep RL has achieved breakthrough performance in complex tasks.

 World models enable sample efficiency via “imagination”



Basic Training Formula...

For visual observations

* Pixel space encoder
* Turns observations to latent embeddings

e Sequence modeler

c [ SXA - &
e | earnt end-to-end through

e Some reconstruction such as observation, latent, etc.



Autoregressive Transformer

As a sequence modeller

» Unidirectional generation process

* Unable to fully capture global
contexts

e e.0., STORM|1],
e h, = 7, isaMLP

* Predicting categorical logits

Zhang, Weipu, et al. "Storm: Efficient stochastic transformer based world models for reinforcement learning." Advances in Neural Information Processing Systems 36 (2023): 27147-27166.




What could go wrong?

* No global information

 Only one chance to predict z,

» What if logit,; and logit, need to be distinct?

* Result=Predicting infeasible states!



Masked Generative Modelling

» TECO [2] introduces MaskGIT[3] prior p(z, | | /)

o draft-and-revise predicts the next discrete representations

* Uses global context

« “Safer” approach to predict Z,

* One step at a time (after looking at current global prediction)

Yan, Wilson, et al. "Temporally consistent transformers for video generation." International Conference on Machine Learning. PMLR, 2023.
Chang, Huiwen, et al. "Maskgit: Masked generative image transformer." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2022.



World model w/ masked generative prior

tl;dr: we replace a MLP module with a MaskGIT module

 Concatenate hidden state /1, with masked latent
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World model w/ masked generative prior

tl;dr: we replace a MLP module with a MaskGIT module

* During inference

| | | GIT-STORM

* perform draft-and-revise using masked decoding . T S
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Results

Better modeling capabilities!
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Results

Better modeling capabilities!

Game FVD ({) Perplexity (1)
. STORM GIT-STORM STORM GIT-STORM
Boxing  1458.32 1580.32 49.24 54.95
Hero 381.16 354.16 10.55 30.25
Freeway  105.45 80.33 33.15 67.92
Task FVD ({) Perplexity ()
STORM GIT-STORM STORM GIT-STORM
Cartpole Balance Sparse  2924.81 1892.44 1.00 3.76
Hopper Hop 4024.11 3458.19 3.39 22.59

Quadruped Run 3560.33 1000.91 1.00 2.61




Results
... Leading to better policy

19% higher human mean than STORM
P(GIT-STORM >Y)

Over 20% improved IQM than STORM DreamerV3 |

DrQ |
STORM b
CURL
TWM |
IRIS |
SimPLe |
SPR |

Over 50% probability of improvement to all
baselines
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Results

Works for continuous action environments too

* Transformer-based world models to continuous action spaces (DMC Suite) was unaddressed by
IRIS, TECO or the original STORM

e GIT-STORM reports results on DMC benchmark

* Over 50% probability of improvement to STORM, PPO, and SAC



Limitations and Future Works

 Our method falls short on continuous action space benchmarks, compared to
GRU based approaches

* Why does transformer based methods fails to capture continuous action
space worlds?

* We can use only one iteration for the Draft-and-Revise decoding scheme

* How to fully exploit the advantages of this decoding scheme?



Summary

* World modeling approaches involve categorical distribution for latents
* [reat prior distributions as “2d grid”

e Just like images
* |Learn to uncover “mass” for the distributions using maskGIT

* Refine prior distributions during inference
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