Title

Bi-axial Autonomous roBot with Obstacle avoidance (BABO)

We thought about the subtitle, but we ran out of time

Zarif Ikram

Department of Computer Science and Engineering Bangladesh University of Engineering and Technology

October 28, 2023

Zarif Ikram Bi-axial Autonomous roBot with Obstacle avoidance (BABO) 1

Motivation

• A 2009 Paper on Representative Reinforcement Learning (RL) [1]

- Talks about a simple robot that can be used in classrooms
- The robot learns to crawl using RL
- 1-axis movement
- Today, there are more complex RL techniques such as hierarchical RL, deep RL, transfer RL etc.
 - We need a device to test different techniques in real life
 - The device needs to be simple enough for classroom demonstration

Electronics

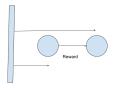
Electronics that we used

- Arduino Nano 2 units
- Sonar sensor 3 units
- Bluetooth Module 1 unit
- SD card Module 1 unit
- Step Down Transformer 2 units
- Battery 2 units
- Motor Driver 1 unit
- Motor 3 units
- LCD Monitor 1 unit

Chassis

Things that we used to make the body structure

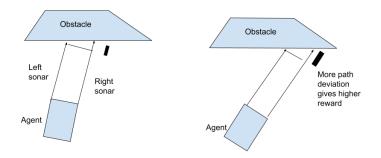
- Plexiglass 2 sheets
- Caster Wheel 4 units
- L bracket 2 units



Reinforcement Learning

- We used Hierarchical Q learning Algorithm
 - Agents learns different sub-actions and then uses it to leant a bigger action
 - In this case agent learns to crawl using a 2-joint arm.
 - Then it learns how to avoid facing obstacles
 - Finally it uses these lessons for a bigger task, crawling while avoiding obstacles!
 - Of course, using motors with wheels to avoid obstacles is a no brainer, but that would not represent hierarchical RL.

Reward Functions


- For crawling learning, the reward function generated positive reward when distance increased from the back.
- It takes approx. 2 episodes of 500 iterations to properly learn the motion

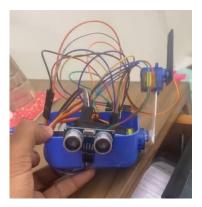
Reward Functions

- For obstacle avoidance, we reward the path deviation from the obstacle
- Barely moving away from the obstacle and going back is not a good idea
- Turning the other side is
- We train approx. 6 episodes with strategically placed obstacles to train the motion
- It can be trained more to perfection

Reward Functions

Serial Communication

• Serial Communication


We used serial communication to communicate between two arduino, bluetooth module, LCD module, SD card module

Everything Seems Fragile

- We had to make 3 versions of the chassis
- The first one was too small
- The second one was heavy and did not possess the rigidity required for arms
- The third one was alright

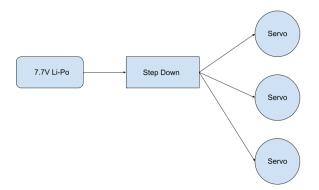
Everything Seems Fragile

First chassis

Zarif Ikram Bi-axial Autonomous roBot with Obstacle avoidance (BABO)11

Everything Seems Fragile

Second chassis



Servos Won't Serve!

- We first used SG90 servo
- But it did not have the torque required
- So we chose MG995 servo
- But we could not power it without external power item So we chose to power it through a step down transformer from a 7.7V LI-PO (as 7.7v directly will fry the servos)

Servos Won't Serve!

Power Diagram

Nano Justifying Its Name In Memory

- To build a system that can retain its learning which is transferable, we needed to implement an sd card solution
- The problem is, Arduino Nano has only 2kb of RAM!
- The q table barely fits into the memory
- Now The sd card buffer wants 512 bytes
- Result

Global variables use 2731 bytes (133%) of dynamic memory, leaving -683 bytes for local variables. Maximum is 2048 bytes. Not enough memory; see https://support.anduino.cc/hc/en-us/articles/360013025179 for tips on reducing your footprint. data section exceeds available space in board

Compilation error: data section exceeds available space in board

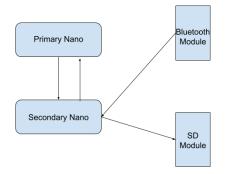
Nano Justifying Its Name In Memory

- To build a system that can retain its learning which is transferable, we needed to implement an sd card solution
- The problem is, Arduino Nano has only 2kb of RAM!
- The q table barely fits into the memory
- Now The sd card buffer wants 512 bytes
- Result

Global variables use 2731 bytes (133%) of dynamic memory, leaving -683 bytes for local variables. Maximum is 2048 bytes. Not enough memory; see https://support.anduino.cc/hc/en-us/articles/360013025179 for tips on reducing your footprint. data section exceeds available space in board

Compilation error: data section exceeds available space in board

Nano Justifying Its Name In Memory


- We understood we needed more memory
- Arduino Mega is an obvious choice
- But it is too big
- So we decided to go with two Nanos
- We rebuilt the entire circuit and connected the Nanos using serial communication

Nano Justifying Its Name In Memory

- We understood we needed more memory
- Arduino Mega is an obvious choice
- But it is too big
- So we decided to go with two Nanos
- We rebuilt the entire circuit and connected the Nanos using serial communication

Nano Justifying Its Name In Memory

Dataflow Diagram

Zarif Ikram Bi-axial Autonomous roBot with Obstacle avoidance (BABO)17

Metrics

Here we present some metrics we encountered during our implementation

Execution	Time in Seconds
Saving in q table in a file	115
Loading q table from SD	96
1 Iteration	0.4
1 Episode	364

Future Work

- WiFi communication with a remove server.
 - Will not have to depend on arduino's computing power
 - Can test any algorithms in the robot
- Similar to MIT's Duckietown, but much cheaper
 - Recently talked to Prof. Jim Whitehead(Computational Media, University of California Santa Cruz, California) and his PhD. student Golam M. Muktadir.
 - Need your help

Future Work

- WiFi communication with a remove server.
 - Will not have to depend on arduino's computing power
 - Can test any algorithms in the robot
- Similar to MIT's Duckietown, but much cheaper
 - Recently talked to Prof. Jim Whitehead(Computational Media, University of California Santa Cruz, California) and his PhD. student Golam M. Muktadir.
 - Need your help

Contribution

- Raihan and Avro was in charge of the the chassis
- Rayan and Emtiaz was in charge of the electronics
- Ikram was in charge of planning and codes
- The project was a collaborative effort, and everyone in the group contributed equally.

Thank you

Thank you for listening. We thoroughly enjoyed the course. We thank you for that.